CHARGE BREEDING TECHNIQUES RNB6 ARGONNE 22-26TH SEPTEMBER 2003 #### HISTORY - * STRIPPERS AROUND SINCE EVER - * ECRIS CB STUDIES 1993 (ISN GRENOBLE FOR PIAFE) - * EBIS INJECTION TESTS 1994 (STOCKHOLM FOR REX) - * REX-ISOLDE RIB 2001 #### **OUTLINE OF TALK** - I. MOTIVATION - 2. CB TECHNIQUES & RESULTS STRIPPER EBIS **ECRIS** - 3. FUTURE DEVELOPMENT - 4. CONCLUSIONS # **MOTIVATION** PHYSICS CASE FOR PHYSICIST TO MOTIVATE Pulsed LINACCW LINAC #### **ENERGY REQUEST** - * FEW MeV/U TO REACH AND PASS COULOMB BARRIER - * GeV FOR BETA BEAMS - -> NEED FOR POST ACCELERATION OF ISOL BEAMS #### AND ENERGY ∝ Q IN LINAC Q² IN CYCLOTRON MASS-TO-CHARGE RATIO (A/Q) < 1/9 THE IDEA Charge breed (I $^+ \rightarrow N^+$) Low-energy ions SIMPLICITY(?) Efficiency(?) **COMPACTNESS** (SHORTER/SIMPLER/CHEAPER LINAC) # BRUTE FORCE #### HOW LONG WOULD A I+ LINAC BE? - * W_{nucl} [MeV/u]=E_{acceleration} [V/m] * q/A [e/u] * L [m] - * $E_{ACC} \sim 5 \text{ MV/m}$ ACCELERATION FIELD - * LIMITED TO q/A < 1/30 OR 1/60 LIMITS * PRICE ESTIMATE I+ ACC - PURE SCALING | FINAL ENERGY | MASS | LENGTH | PRICE | |--------------|------|--------|--------| | (MEV/U) | (A) | (M) | (MUSD) | | 5 | 100 | 100 | 50(!) | | 10 | 100 | 200 | 100(!) | #### **CERN proton LINAC2** - * Price 38 MCHF - * Field gradient linac 1.5 2 MV/m - * q/A=1, 50 MeV, 34 m, 3.3 m RFQ # CLASSIC CONCEPT - STRIPPING - SIMPLE METHOD AND FAST (µS ISOTOPES) - ⊗ NEEDS PRE-ACCELERATION IN GAS STRIPPING 8 TO 20 KEV/U IN FOIL STRIPPING ~0.5 MEV/U - NO MACRO-BUNCHING CAPABILITY | EXAMPLE - SPES SCENARIO | | | | |--|--|--|--| | BUNCHING EFFICIENCY 65% | | | | | GAS STRIPPING AT 8 KEV/U 40% | | | | | STRIPPING FOIL AT 500 KEV/U 20% | | | | | IN TOTAL (SINGLE CHARGE ACC OF 132SN) 4% | | | | # MULTI-CHARGE STATE ACCELERATION - * ACCELERATE MULTIPLE Q AFTER THE STRIPPER - * $\Delta q/q$ of ~20% can be accepted MCA and overall stripping efficiency (RIA) RIA PROJECT # THE EBIS CHARGE BREEDER - * PRODUCES MULTIPLY CHARGED IONS - * IONS ARE TRAPPED IN A MAGNETO-ELECTROSTATIC TRAP - * IONISATION BY e⁻ BOMBARDMENT FROM AN MONO-ENERGETIC e⁻ BEAM #### ELECTRON BEAM ION SOURCE CHARGE DEVELOPMENT FOR STEPWISE IONISATION ionisation extraction - * ~25% IN ONE CHARGE STATE - * MORE NEAR CLOSED SHELLS - * VARY $T_{BREEDING} \rightarrow VARY CSD$ # EBIS CHARACTERISTICS I #### BREEDING CAPACITY $$C = \frac{1.05 \cdot 10^{13} \cdot I_e L}{\sqrt{U_e}} k$$ C = number of elementary charges I_e and U_e = e⁻ beam current and energy k = neutralization factor L = trap length #### REAL VALUES $I_{e} = 0.5 A$ $U_{\rm e} = 5\,000\,{\rm eV}$ L = 0.8 m k = 50% ~3·10¹⁰ charges CHARGE STATE $$j_e \tau = \sum_{q=1}^{k-1} \frac{e}{\sigma_{q \to q+1}}$$ Typical ionization times (A/q<4.5) (Calculated REXEBIS values) ⁵²Ca¹²⁺ 20 ms ⁷⁰Ni¹⁶⁺ 22 ms ⁷⁸Zn¹⁸⁺ 30 ms ⁸⁶Se²⁰⁺ 40 ms ⁹⁴Kr²¹⁺ 50 ms ¹⁰²Rb²³⁺ 60 ms ¹³⁴Cd³⁰⁺ 120 ms ¹⁴⁴Xe³²⁺ 150 ms ¹⁴⁸Ba³³⁺ 160 ms - **SHORT BREEDING TIME** - © ELEMENT INDEPENDENT # EBIS CHARACTERISTICS II #### TIME STRUCTURE - \otimes Bunched injected beam <50 μs - © BUNCHED EXTRACTED BEAM (10 μs to several ms) - ⊕ ENERGY SPREAD < 50*q EV </p> #### EMITTANCE / ACCEPTANCE - © EMITTANCE - $10 \pi \cdot MM \cdot MRAD (95\% AT 20 KV)$ - \odot SMALL EMITTANCE => SMALL ACCEPTANCE ~10 π·MM·MRAD (95% AT 60 KV) - * DEPENDENT ON: BREEDING TIME, NEUTRALIZATION ETC # PREPARATORY PENNING TRAP #### Accumulation #### Cooling **Ejection** #### PRINCIPLE - * CONTINUOUS INJECTION - * BUNCHING (10-20 µS BUNCH EXTRACTED) - * Cooling (10-20 Ms) #### RESULTS REXTRAP (HE), LI,...,U EFFICIENCY 45 % EMITTANCE >10 π MM MRAD @ 30 KEV SPACE CHARGE EFFECTS WITH SIDEBAND COOLING OF MORE THAN 10⁵ IONS/PULSE => 10⁷ IONS/S THE LARGE REXTRAP AT ISOLDE IN PRESENT EBIS CB CONCEPT, TRAP IS THE LIMITATION (108 IONS/S) # REX-ISOLDE BUNCHING/COOLING/BREEDING - * T_{COOLING}, T_{BREEDING} TIMES < 20 MS EACH - * REPETITION RATE UP TO 100 HZ - * $Q/A \sim 1/4.5$ - * MASS SEPARATOR (ACHROMATIC) RESOLUTION > 100 - © RAMP EBIS PLATFORM VOLTAGE -> DECOUPLE ISOL PART AND LINAC 1⁺ ions from ISOLDE #### EFFICIENCIES (DESIGN VALUES) • trap bunching: 90% • beam transport: >85% • EBIS injection: >50% • EBIS $Q_i/\Sigma Q_i$: 30% $\rightarrow \Sigma_{\text{eff}}$ 12% in one charge state PRICE FOR EBIS AND TRAP ~1.1 MUSD IN TOTAL # EXTRACTION MASS SPECTRUM I #### LOW INTENSITY BEAMS - * EBIS IS UHV (LOW RESIDUAL GAS, ~10-11 MBAR) - Needs UHV conditions for OPERATION #### EXAMPLE OF BEAM CONTAMINATION - LI RUN - * 9Li²⁺, run at A/q=4.5 - * Contamination of ¹⁸O⁴⁺ rest-gas of 1·10⁴ ions/s - * Time gate => - 15 times higher Li than O # EXTRACTION MASS SPECTRUM | #### VARY BREEDING TIME - * HIGHER INTENSITIES > 100 pA INJ. - * LOWER EFFICIENCY BUT OVERALL MORE PARTICLES THROUGH * STRONG NE CONTAMINATION FROM TRAP # BREEDING EFFICIENCY NB! PENNING TRAP NOT INCLUDED! #### **EFFICIENCIES** BEAM TRANSPORT + EBIS + MASS ANALYZER | CB IN
STABLE | REXEBIS
RADIOACTIVE | |----------------------------------|-----------------------------------| | 7Lj2+ | 9 Lj 2+ | | ²³ Na ⁷⁺ | ²⁴⁻²⁹ Na ⁷⁺ | | ²⁷ A 8+ | | | ²⁴ Mg ⁸⁺ | ³⁰ Mg ⁸⁺ | | 39 K 10+ | | | | ¹³⁸ Ba ²⁶⁺ | | ¹³³ Cs ³²⁺ | | | | ¹⁵³ Sm ²⁸⁺ | - **[☉] INDEPENDENT OF MASS** - \odot CAN IN PRINCIPLE REACH ~30% (N⁷⁺ 30% & AR¹⁴⁺ 9.4% IN SACLAY AND STOCKHOLM) #### EBIS DRAWBACKS AS CB - © CATHODE LIMITED LIFETIME - **⊗** COMPLICATED # THE ECRIS CHARGE BREEDER # ELECTRON CYCLOTRON RESONANCE ION SOURCE #### **PRINCIPLE** - * INJECT VERY SLOW IONS THROUGH A PLASMA OF HOT e - * ELECTRON ENERGY A FEW KEV - * DENSITY <1.1013 S/CM3 - * IONIC CONFINEMENT $\tau_1 \sim 10$ MS TO A FEW 100 MS # ECRIS AS CHARGE BREEDER - ☺ I⁺ INJECTION CONTINUOUS OR BUNCHED - Not so complex - * CHARGE-TO-MASS RATIO OF <1/6 PRICE FOR PHOENIX AND RF GENERATOR ~300 KUSD 1+ source - © ECRIS MAGNETS ON GROUND => AVOID HV PLATFORM WITH 50 KW - ⊗ INJECTION = EXTRACTION VOLTAGE => - * VARY I + SOURCE POTENTIAL - * OR USE A VE-RFQ # ECRIS CHARACTERISTICS I #### CONFINEMENT TIME - * 10 MS PER CHARGE STATE - * Breeding time ≠ Confinement time - CHARGE TUNING WITH RF POWER MAGNETIC FIELD, SUPPORT GAS PRESSURE #### INTENSITY VS EFFICIENCY - No PROBLEM WITH 10¹² IONS/S - © ECRIS CAN ACCEPT >μA - No efficiency decrease When decreasing the current # ECRIS CHARACTERISTICS II #### BEAM ENERGIES * EXTRACTED ENERGY SPREAD ~ I V * q #### ACCEPTANCE / EMITTANCE # EXTRACTION MASS SPECTRUM - * GLOBAL CAPTURE ~50% POSSIBLE (EXTRACTION IN TWO DIRECTIONS) - * CSD BROAD DUE TO CONTINUOUS INJECTION INJECTED BEAM: In⁺ 520 nA, 20 KeV RF power @ I4 GHz: 340 W TOTAL HV CURRENT: 1.1 mA * $$\eta(1^+ \rightarrow 18^+) = 6\%$$ * GLOBAL CAPTURE = 45% # RESIDUAL GAS BACKGROUND - □ Total extracted current I-2 MA - * WORKING PRESSURE = | TO | 10.10.6 MBAR - * RESIDUAL GAS PEAKS >> RADIOACTIVE ATOMS * Non UHV PHOENIX BOOSTER SPECTRUM, A/q=0-70 # NOISE LEVEL IN BETWEEN RESIDUAL GAS PEAKS? * KEK-JAERI HAS 10 NA IN 6<A/q<7 #### RESIDUAL GAS SUPPRESSION - * WIEN FILTER - * BAKEABLE UHV DEVICES? - * MONOISOTOPIC BUFFER GAS - * NEGs ### PRODUCED ELEMENTS - © FAST SETUP: DIFFERENT STABLE BEAM WITHIN AN HOUR - * EASIEST NOBLE GASES HEAVIER ELEMENTS # ELEMENTS WHICH HAVE BEEN EXPERIMENTALLY STUDIED WITH THE ISN-ECRIS CHARGE BREEDER - * "DAILY PRODUCTION" OF A/q \approx 7 - * ELEMENTS PRODUCED IN ~10 DAYS: ¹¹⁵In, ¹⁰⁹Ag, ⁶⁴Zn, ¹²⁰Sn, ⁸⁸Sr, ⁶⁹Ga, ⁹⁰Y, ³⁹K, ⁸⁵Rb, ⁵⁹Co * CHARGE BREEDING EFFICIENCY OF AT LEAST 3% ### PULSED EXTRACTION - * EXTRACTION CW OR AFTERGLOW PULSED - * AFTERGLOW METHOD = SWITCH OFF RF - * PULSED EXTRACTION FOR SYNCHROTRONS AND PULSED LINACS for charge bred Pb²⁷⁺ #### **CB WITH AFTERGLOW EXTRACTION** - * BEAM IN RBI+ - * BEAM OUT RB¹⁵⁺ 6·10¹⁰ CHARGES/PULSE 3·10¹¹ CHARGES/S - 2.2 % EFFICIENCY # ECRIS CBs around the world #### COMPARISON ECRIS AND REXEBIS AT ISOLDE - * FROM 10 TO 18 GHZ (28 GHZ POSSIBLE) - * MODULAR AXIAL B-FIELD # RESULTS FROM KEK-JAERI - * 18 GHz ECRIS, A/Q<7 - * 6.5% BREEDING EFFICIENCY XE+ TO XE²⁰⁺ * ISAC (TRIUMF) HAS ALSO A PHOENIX UNDER COMMISSIONING # FUTURE EBIS #### WHAT TO IMPROVE ON EBIS? - I. SHORTENING OF THE TBREEDING - 2. CONTINUOUS INJECTION — - 3. INCREASED CHARGE CAPACITY - * REPETITION RATE 200 HZ - * NO LIFE-TIME LOSSES AT - * HIGH CAPACITY Continuous injection / Accu EBIS with RFQ cooler Au³³⁺ A/q~6 40 ms breeding O1 x b) esind/seb 1.0 RHIC requirement scaled to EBTS trap length Electron Current (A) EBIS test stand #### ADVANCED CHARGE BREEDING # TRENDS IN ECRIS DEVELOPMENT - * SHORTER EXTRACTION PULSE - * SHORTER CONFINEMENT TIME MODULAR ECRIS PHOENIX 28 GHz high current extraction (Lead) Shorter and higher afterglow * Higher charge state / larger capacity / better I+ capture Higher RF frequency $n_e \propto \omega_{RF}^2 \; \text{(scaling rule)} \\ B_{\text{resonance}} \sim \omega_{RF} \; \text{-> high B-field and sc solenoids}$ Optical coupling of the UHF power: * < 100 KW / 1 ms each 20 s * ω_{RF} = 37.5 *GHz* Very simple magnetic system IAP Nizhny Novgorod + LPSC $n_e \sim 5.10^{13} \text{ cm}^{-3}$ # BREEDER RING # **OPERATION EFFICIENCY** I_{∞} = na/[1- μ (1-a)] NB! Decay n=extraction eff. losses a=ionisation eff. excluded. μ =ring transport eff. Example: n=0.9, a=0.8, $\mu=0.9 => 0.87$ ### Large dispersive magnetic separator/merger #### **PROBLEMS** - * ADDED DELAY TIME - * TRANSPORT LOSSES - * EXTRACTION/INJECTION LOSSES Idea from E. A. Lamzin, Russia Pursued by A. Villari and GANIL | | 1 | | Stripper | EBIS | ECRIS | |---|---|-----------------------|--|------------------------------------|----------------------------------| | irence | | Simplicity | 3, passive element | 1, complicated (SC, UHV, e-gun) | 2, medium
(RF, beam tuning) | | | | Beam properties in | 3, no special requirements | 1, bunched, small acceptance | 2, CW, medium acceptance | | | | Beam properties out | 1, emittance blow-up | 3, us or ms bunch, small emittance | 2, CW or bunched | | ב
ב
ב | | Low intensities | 3, no contamination | 2, some 100 fA | 1, high rest-gas level | | 5 5 | | Rapidity | 3, instant, us isotopes | 2, 10 ms | 1, a few 10 ms | | weight function according personal preference | | CSD | 3, narrow,
high charge state | 3, narrow,
high charge state | 2, broad CSD,
moderate charge | | | | CSD tuning | 1, not tunable | 3, change time | 2, many parameters | | | | Machine contamination | 2, foil change | 1, multiple parts | 2, change plasma
liner | | uncti | | Storage time | 1, non existing | 3, up to s | 2, ~100 ms | | | | Beam capacity | 3, very high, 100 uA | 1, limited to nA | 2, several uA | | D
> | | Energy spread | 1, ∆W/W~1‰ | 2, a few 10 eV*q | 3, some eV*q | | | | Efficiency | 2, a few % | 2, a few % | 2, a few % | | | | Life-time | 2, foil breakage,
50 mC/cm ² | 1, electron cathode | 3, klystron lifetime | | | | Price | 1 high, (incl. pre-acc) | 2 ~1 MUSD
(trap +EBIS) | 3, ~0.3 MUSD | ### CONCLUSIONS #### **GUIDELINES** - * OBTAINED CB EFFICIENCIES IN 5% REGION - * EBIS FOR LOW INTENSITIES - * ECRIS-STRIPPER COMBINATION FOR HIGH INTENSITIES BREAKING POINT I NA Transmission efficiencies for ECR and stripping schemes #### THREE CHOICES - THREE VIRTUES #### Stripper Fast but expensive (pre-acc. LINAC) #### **ECRIS** Large capacity but dirty **EBIS** Electrical car Clean but low capacity #### * FUTURE INTERESTING CONCEPTS * ADVANCED CHARGE BREEDING PROPOSAL #### Acknowledgement - O. Kester, LMU F. Ames and B. Wolf, CERN - T. Lamy and P. Sortais, ISN Grenoble - T. Fritioff and C. Bartman, CERN and Daresbury